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A N E W  M O D E L  F O R  T H E  D Y N A M I C S  

OF W E T T I N G  F I L M S  

O. V. Voinov UDC 532.5 

The slow motion of wetting films of a viscous fluid in thin capillaries is considered. It is known that the 
gas-fluid interface (a meniscus) in a capillary can form a dynamic boundary angle with a solid wall [1, 2]. For 
small angles, a stationary precursive film (p-film) can form, which moves under the action of van der Waals 
forces. Its characteristic maximum thickness depends on the velocity [1]. 

A mathematical model of the nonstationary dynamics of wetting films [3] includes boundary conditions 
at the moving boundary with a "thick" film and at the wetting line. A new model describes slow wetting 
without a boundary angle. The nonlinear boundary-value problem corresponds to nonsteady flow of a film 
with two boundary layers. Criteria of realization of the ultimate modes of the dynamics of a p-film axe found. 
It is also shown that in flow with a boundary angle, the length of the p-film is much shorter than the capillary 
radius. Some significant effects of the dynamics of wetting films can be described only within the framework 
of the new model. The dynamics of a p-film during fluid rise in a thin capillaxy can be realized largely by this 
model. 

A general analytical solution of the nonlinear self-similax wetting problem in the flat case is obtained. 
Previously, the main asymptotes and an analytical solution of the axisymmetric problem [3] were found. It is 
established that the problems of wetting of a dry surface and of a surface covered with a superthin film are 
similar, as are the problems of spreading of wetting films in the cases of a stationary meniscus, a semi-infinite 
film, and discontinuity decay for thickness. The limits of validity for the resulting self-similax solutions as 
intermediary asymptotes for t --* oo are found in which we ignore the influence of gravity. 

1. E q u i l i b r i u m  I n t e r f a c e  and  t h e  D y n a m i c s  of  a W e t t i n g  Fi lm.  The spreading motion of a thin 
wetting film of a viscous fluid over a flat solid surface in the presence of gravity g and van der Waals forces 
obeys the well-known equation 

0-7 = - a i r  grad ~zXh + ~ + 0g , (1.1) 

where h is the thickness of the film IVhl << 1, g is the dynamic viscosity, a is the surface tension coefficient, 
p is the density, and A' is determined from the Hamaker constants [4]. 

If the interface (ICal  << 1, C a  = gvo/ ) mov  at a low velocity v0 in a round or flat capillary (Fig. 1), 
the interface shape at a fairly long distance from the wM1 h >> h0 is close to its shape at equilibrium: 

o'(R'~ 1 + R2 -1 )  = pg(x  - xo) + o'R -1  + const (1.2) 

(the interface is symmetric about the capillary axis, R1 and R2 are the main curvature radii, and the x axis 
is in opposition to g, g = ]gl. In the plane of x and h, R1 ---* R as z -* x0; x0 is the point of intersection of 
the interface (1.2) with the solid wall (h = 0 at x = x0), z0 = v0. The dynamics of a thin p-film does not 
depend on the second radius of curvature R2 if the round capillary is uniform along its axis. Note that if the 
dynamics of the film is governed by capillary forces, the role of R2 can be significant for a film of great length. 

We consider the parameter h0 that divides the region of small thicknesses (h < h0), in which spreading 
flow is substantial, and the region of great thicknesses (h >> h0), in which (1.2) is valid. If a0 ~ 0, then h -,~ h0, 
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which corresponds to Ix - x0J "-~ 6 -~ ~ because of the boundedness of the Bond number Bo = pgR2/cr 
(Bo < 1). From (1.2) follows the asymptotic (8/R ~ O) boundary condition for (1.1): 

02h 1 ~ ( x  z- zo 

Oz 2 = R +  a - z 0 ) + . . .  at 6 , - o o .  

Ignoring small values of ,-~ Bo 6 / R ,  we write 

02h 1 x - zo 
Ox 2 = ~ + . . .  at 5 + - o o ,  I x - x 0 [ < < R .  (1.3) 

To this corresponds the parabolic profile of the meniscus: 

h = (1/2R)(z - x0) 2 - (~0(x - x0) + . . .  (1.4) 

(a0 is the dynamic boundary angle). The parameter h0 "~ a2R [1, 2]. 
To close the asymptotic formulation of the problem (1.1)-(1.4), it is sufficient to specify the fluid flow 

rate (which is variable in the general case) in the capillary, the conditions for (1.1) at the wetting line, and 
the initial conditions. We assume that  at the initial moment  t = 0 the wetting line x = x.  is close to the edge 
of the meniscus (x. = x0). 

2. A s y m p t o t i c  M o d e l  of  t h e  D y n a m i c s  of  Slow W e t t i n g .  We assume that  the time from the 
start of the wetting process is large (t --+ co) and that  the meniscus velocity v0 is fairly low and changes 
smoothly with time. In this case, the scale I (l ,.~ h/IVhl) of variation in wetting-film thickness for x > x0 is 
sufficiently large; and 10 >> 6 in the limit x --~ x0 (but x - x0 >> 6). In this case, we can ignore the contribution 
of the capillary forces to (1.1) and write the equation of dynamics of a p-film [3, 5]: 

Oh ~# ae pg h2 A ~ 
0 - -~ -=eeAlnh -  gVh 3, v - - - ~ - V h + ~ #  , ~e -6~r# .  (2.1) 

In a boundary layer near the meniscus -,, BoS/R, in which capillary forces are important,  Eq. (1.1) 
can also be simplified. We introduce the following variables: 

= ( x - x 0 ) / 5 ,  h = h/he,  ~ =  t / r ,  5 =  h]/A, re = 3~54/(ah]),  ~ = ~/A'/(2~a) (2.2) 

(T is the characteristic t ime of the process, and h0 = he for slow wetting). With accuracy up to small quantities 
,,, Bo6/R,  Eq. (1.1) in the boundary layer takes the form 

re O~ vOte Oh 0 ~3 03h 02 
r 0 t  5 0 ~ -  0~ ~ +0-~lnf~"  (2.3) 

The relaxation time re (2.2) coincides with the relaxation time to a uniform state of a film region of length 
5 under the action of capillary forces [6]. Owing to the strong difference between the scale 10 of flow of the 
p-film and the thickness of the boundary layer (10 >> 5), for Eq. (2.3) the following is true: 

--+ 1 at ~ --+ co. (2.4) 
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Large characteristic times correspond to slow wetting: 

r >> r,, = 6 / I . o l  >> T, (2.5) 
(r, -~ 0), when the left side of (2.3) is negligibly small in a boundary layer (~ --, 1), the equation for which, 
taking into account (2.4), is written in the form 

02h A' A' 
crux2 + ~ = 6~rh]" (2.6) 

In the limit of (2.4), we have h - h, ,-, h, exp(-5:). From (1.3) and Eq. (2.6) we find 

h, = (A2R/3)  1/3, 6 = h ~ s R / 3 ,  A 2 = A ' / ( 2 r a ) .  (2.7) 

To the limit (2.4) of the solution in the boundary layer corresponds the following boundary condition 
for Eq. (2.1): 

h = h s  at x = x 0 .  (2.8) 

At the wetting line, the following conditions [3, 5] must hold: 

dz ,  
h = h. ,  dt = v at x = x . .  (2.9) 

For steady motion of the p-film, conditions (2.9) agree with the sheet truncation effect [7]. 
One can show that  the scale of the solution of problem (2.1), (2.8), and (2.9) at x = x0 is sufficiently 

large (10 >> 6), if (2.5) holds. This is true, in particular, for exact solutions considered below. The problem of 
spreading of a wetting film, obviously, makes sense for hs > h.,  since hs = h. corresponds to equilibrium. 

Thus, for slow wetting, the solution of Eq. (1.1) has the structure shown in Fig. 2, where 1 is the 
meniscus, 2 is the boundary layer between the p-film and the meniscus, 3 is the p-film, and 4 is the boundary 
layer in the wetting line [3]. Owing to this, the dynamics of the wetting p-film is determined by solution of 
Eq. (2.1) subject to boundary conditions (2.8) and (2.9), in which the function xo(t) is known and x . ( t )  is 
to be determined. The new model differs from the well-known model of [3], which contains the condition of 
unlimited thickness h = c~ for x = x0. 

We note that  the boundedness of h at the point x0, generally speaking, cancels the equality v = v0 [3], 
which holds because in a small neighborhood of a singular point a stationary solution is valid. In addition, 
there is a new possibility of describing flows for v0 < 0, when the interface departs from the capillary. 

Conditions (2.8) and (2.9) for the one-dimensional problem can be extended to the two-dimensional 
case. For (2.9), this extension is given in [3]. 

Below, we shall s tudy the intermediate asymptotes in the limit t ~ oo, for which the acceleration of 
gravity (2.1) (g = 0) can be ignored. It is interesting to find out whether the motion of fairly long wetting 
films (of length of the order of the capillary meniscus rise) can be described within the framework of such 
asymptotes. 

3. S t a t i o n a r y  S o l u t i o n s .  We consider solutions of the form h(x  - rot), which are stationary relative 
to the meniscus. If a solid surface remote from the meniscus is covered with a superthin film of constant 
thickness h+, the solution of (2.1) subject to condition (2.8) has the form 

h = h +  1 +  h + _ l  exp - v o ( x - x o  , x o = v o .  (3.1) 

For steady flow in the stationary system (v0 -- 0), we have thickness h = hs exp(-Qx/ae) ,  Q = const. 
Note that  conditions (2.9) are not fulfilled for (3.1) at any point x E (x0(t), ec). Therefore, there is no 

analogy between problems of the steady spreading of a film over dry and wet surfaces. Interestingly, such an 
analogy is possible for nonsteady spreading. 
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(3.2). 

For h+ ~ 0, from (3.1) follows a film profile that  is analogous to [1, 7, 8]: 

It is important  that ,  in contrast to (3.1), the conditions at the wetting line (2.9) can be fulfilled for 

For flow of a thin layer with a dynamic boundary angle [1], the parameter h0, which is equal to h, in 
the absence of the angle, exceeds considerably (h0 >> hm) the characteristic maximum thickness of a p-film 

h,,, = ~ ( 3 C a )  -1/3. (3.3) 

Note that  for slow wetting the parameter  hs coincides with the maximum thickness of the film. 
4. C r i t e r i a  for  L i m i t i n g  W e t t i n g  M o d e s .  Let us compare the model of a boundary layer in the 

neighborhood of a meniscus with the dynamic boundary angle model [1]. According to (2.2) and (2.7), the 
relaxation t ime of the boundary layer near the meniscus is 

rs = ~n2 / (3ah , ) .  (4.1) 

To the condition of slow wetting rv = ~/ivol >> r~, by virtue of (2.7), (3.3), and (4.1), the following 
relationship of the maximum thicknesses in different modes corresponds: hs << hm. Therefore, the meniscus 
emerges starting from characteristic thicknesses hs that  are considerably smaller than the parameter hm, in 
contrast to the flow mode with a dynamic boundary angle (h0 >> hm). Thus, hm in (3.3) has the meaning of 
a parameter that  demarcates the limiting flow modes. 

Let us find the min imum angle a ,  and the corresponding capillary number Ca, which restrict the 
validity of the formula for the dynamic boundary angle of a meniscus [1, 2] 

ct30 = 9Ca(ln(holhm) - (1/3) ln ln(hoihm)) ,  ho = (21e2)oL2R (4.2) 

(the refined value of h0 corresponds to [9]). The angle ct0 exists for h0 >> hm and makes no sense for 
ln(ho/h,,,) ,-~ 1. Also, from (2.7), (3.3), and (4.2) follows the relation h,,, ~ hs or an equivalent relation 
rv "- rs. Hence, we obtain the following restriction on (4.2): 

s0 >> a ,  = 2.4()~/R) 1/3 or Ca >> Ca, = $ /R .  (4.3) 

The conditions hs << hm and (4.3) can be combined by one dimensionless parameter  H, = CaR/)~. The 
slow wetting mode is the case for II, << 1. The dynamic boundary angle is observed for H, >> 1. Therefore, 
the criterion H, determines the asymptotic wetting modes in the simplest way. 

5. M a x i m u m  L e n g t h  of  a p - F i l m  for  Di f fe ren t  M o d e s .  For the case where a dynamic boundary 
angle is present, by determining the lowest speed from the formula for the minimum capillary number (4.3), 
we find the maximum length of a p-film [3] 

l = ze/(voh,) < 0.2R)~/h, << R. (5.1) 

The last inequality is true because h, >> $ ~,, a (a is the molecule size). From (5.1) follows an important 
conclusion: in the presence of a dynamic boundary angle, the length of the p-film is always much smaller than 
the curvature radius of the meniscus. 

We estimate the growth of the length of the p-film during the characteristic relaxation time Ts of the 
meniscus and the ~oundary layer to equilibrium. Gravity does not influence this process, and hence, we can 
assume that  g = 0. 

We consider first quasisteady flow whose velocity v0 changes relatively slowly, and the film length is 
small. Substitution of the solution of (3.2) into (2.1) yields a quasi-steadiness criterion [3]: 

[dvol/dtl << 1/l. (5.2) 

The maximum value of l is achieved for hs >> h,: l .~ ae/(h,vo). Correspondingly, (5.2) takes the form 

ldz2tdtt << 2 lh,. 
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Taking into account the initial condition 1 = 0 for t = 0, as a result of integration, we obtain the following 
restriction on the film length: 

l<< h.. (5.3) 

Note that  for v0 -~ t" and t ~ r condition (5.2) is fulfilled if n > - 1 / 2 .  
We estimate l using the unsteady theory. Assuming, for simplicity, that  hs = oo and x0 = const and 

following the solution in [3] of the problem of a stationary piston, we calculate the length 

t =  (5.4) 

which is significantly larger than the estimate (5.3). Substituting t = rs from (4.1) into (5.4), we find 

~ << R, (5.5) 

which is true by virtue of A << h. ,  hs. According to (5.5), the growth in the length of the wetting film 
during the t ime required for stabilization of the slow wetting model is negligibly small compared with the 
characteristic size of the meniscus R. Therefore, to determine the film length, which is not small compared 
with the meniscus radius R, it is sufficient to use only the slow wetting model, ignoring the effects of meniscus 
motion at relatively high speeds. 

6. D y n a m i c s  of  W e t t i n g  of  a T h i n  Capi l la ry .  The above analysis of the characteristic times 
is sufficiently complete if the equilibrium height H of the capillary meniscus rise is comparable with its 
radius (H -,~ R). If the height of meniscus rise is large (H >> R), which is the case in a thin capillary, new 
characteristic length and t ime scales emerge. 

For large values of the fluid column length x0 (x0 >> R), the spreading motion in the capillary is nearly 
Poiseuille, and the equation of motion of the meniscus takes the form 

a'), p!0) ( 0 # )  
piq- R 1-kpxo xopg= kv+xo~--~ w, x 0 = 0 ,  t = 0 ,  (6.1) 

where Pi and kv are the pressure and the coefficient of resistance ahead of the capillary inlet, w = x b is the 

flow rate; 3' = 1, 0 = 3 and 7 = 2,/9 = 8, for the flat and axisymmetric cases, respectively; p!0) is the gas 
pressure ahead of the meniscus at z0 = 0; and kp is a coefficient that  takes into account the gas volume 
change. 

We consider the filling of a capillary under the action of capillary forces for pi = p!0), kp = 0, and 
k~ = 0. The dynamics of the meniscus in a small neighborhood of the equilibrium height H is defined by the 
formulas 

x0 H H e x p  ( - 1  t )  HO# 73 - = - , r 0 - R 2 p g ,  H =  pgR" (6.2) 

The ra t ioof  relaxation times (6.2) and (4.1) plays an important  role in the dynamics of the p-film: 

r0 = 33,0 R--- ~. 
Ts 

According to (6.3), for fairly thin capillaries (R ~ 0), the characteristic t ime of stopping of the meniscus 
exceeds significantly the relaxation t ime of the boundary layer (r0/rs --+ 0). Therefore, for such capillaries 
the slow wetting model is applicable not only when x0 ~ H, but  also when the meniscus is relatively remote 
from its equilibrium position (Ix0 - HI ~ H). For this, it is necessary that (2.5) be satisfied, which, by virtue 
of (4.1), (6.1), and (6.3) is true when 

:co H, 7 ( R'~ 312 R 7 
> R - 3 0  " - 

(6.4) 
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Obviously, for a vertical capillary this is possible for H1 << H. From (6.4) and (6.2), we obtain the 
condition of validity of the slow wetting model for most of the path traversed by the meniscus: 

<< (6.5) 

For example, for A' = 10  - 2 0  J ,  a - -  0.05 N/m,  and p = 103 kg/m 3, it follows from (6.5) that  R << 2.10 - 3  c m .  

For capillary impregnation, z0 "~ v~. Simple estimates show that in this case the p-film length is 
rather small (l << x0). If condition (6.4) and quasi-steadiness condition (5.1) are fulfilled, solution (3.2) is 
admissible, which describes a quasi-stationary p-film adjacent to the meniscus. If (6.4) does not hold, for the 
greatest part of the path traversed by the meniscus a dynamic boundary angle can be observed. Note that 
the propagation of an extended p-film is a much slower process than capillary impregnation, and differences 
from the stationary theory of p-films can occur, as a rule, in a small neighborhood of the stopping point of 
the meniscus. 

Equation of Motion of Meniscus. Let us refine the relation between the velocity of translational motion 
of the meniscus v0 (v0 = xb) and the flow rate w. Using the law of conservation of mass we write 

vo(S - hsL) + VLohsL = wS 

where S and L are the area and perimeter of the cross section of the capillary, the velocity v is given by (2.1), 
and hs << R. Hence we obtain the refined formula 

v o = w  1+~--~ - v  R (6.6) 

which is useful for a low flow rate w, for which the influence of fluid flow in a thin film on meniscus motion 
is important.  Calculation of the meniscus velocity, according to (6.6), can be performed after problem (2.1), 
(2.8), and (2.9) is solved for v0 = w. 

7. A n a l y t i c a l  S o l u t i o n s  of  t h e  Se l f -S imi la r  P r o b l e m s  of  F i l m  S p r e a d i n g .  Problem (2.1), (2.8), 
and (2.9) has self-similar solutions at g = 0: 

x,/hA. (7.1) 
h = h,y(~), ~ = V2aet" 

The dimensionless thickness of the film y(~) is found from the boundary-value problem 

- ~ y ' = ( l n y ) " ,  ~E(~0 ,~ . ) ,  Y = I ,  y ' = - ~ . ,  ~ = ~ . ,  y = y s ,  ~ = ~ 0 ,  y s = h s / h , .  (7.2) 

The self-similar coordinate ~. of the wetting line, obviously, defines its velocity v.: 

x/tv. = ~, V~/2h , .  

We shall consider important  problems of film spreading that  differ from (7.2). 
Problem o f  Spreading of a Semi-Infinite Film. At the initial moment  t = 0, the film has the shape of a 

step with height h0: h = h0 for z < 0 and h = 0 for x > 0. 
In (7.2), instead of the last condition, the following condition must be fulfilled: 

y ~ y 0 ,  ~ - c r  (7.3) 

The spreading of a fluid over a surface covered by a thin liquid layer can be modeled by replacing 
condition (7.2) at the wetting line by the condition 

y--+ y+ > O, ~ -+ + ~ .  (7.4) 

To the problem of discontinuity decay for the film thickness (t = 0: h = h0 for x < 0 and h = h+ < h0 
for z > 0) correspond conditions (7.3) and (7.4). 
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For integration of Eq. (7.2), we introduce the variables r and ~ according to the formulas 

r = y ,~ly3,  ~ = ~ y , l y .  (7.5) 

Equation (7.2) and its integral [3] are written as 

de - ~ - ~  = Sor § 2V~2; (7.6) 

~2 
~ -  + ~ § l n r  - C = 0. (7.7) 

From (7.5)-(7.7), we find equations that give a solution in parametric form y(r ~(r 

d~ (~/ 1 ) de 
-~- = :F =F 1 , (7.8) 

1 - 4(ln r - C ) 1 r  2r  r - C) 

2 

Y=4--~ " 

Instead of (7.8), we write the equation 

d y = + de  (7.10) 
y ~/r _ 4 r  r - C)" 

The general solution of problem (7.2) is constructed for ~, > 0. The case of ~, < 0 is obtained by the 
substitution ~ --+ -~ .  

We shall treat ~, as a parameter. Then, from (7.2) and (7.7), we obtain 

c = In d ,  

If Ib, >i 41e, from (7.9)-(7.11) follow 

f lny = , 
~, ~/02 - -  4r162 

r __r =~,2. (7.1i) 

(7.12) 

If r  ~ 4/e, there are values of r and y,~ such that the signs in formulas (7.8)-(7.10) change: 

~b,=~bmexp(-~bm/4), r  l n y m =  / dr (7.13) 
r ~/r - 40 ln( r162 

[r162 formulas (7.12) are valid. In the range of y >i y,~ and In the range of y ~ ym and r E 
r E (0, ~b,n) the solution has the form 

Iny = Inym + . I  ~ 1 1 In (7.14) 
~/r - 4 r 1 6 2 1 6 2  

@ 

Solution of the Problem of a Stationary Meniscus. In the case of ~0 = 0, from (7.2), (7.13), and (7.14), 
we find 

sf  ds 
l n y , = 2  V ( / )  t ) / 1 - ' s ' s m ' e x p ' s m - s '  SINE(0,1), s=ln( r  ~2,=4Smexp(--Sm). (7.15) 

0 

Hence follows the function ~,(y,). 
In the limit ys + 1, the coefficient ~, tends to zero according to the law 

{, = ~/-~-s - 1 + . . . ,  (7.16) 
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which corresponds to a low spreading velocity. 
The asymptote ys ~ co corresponds to Sm --* 1. In this limit, 

,,,s] ds = v ~ l n  2 

J0 r  - ( s / s m ) e x p ( s m  - s) I - s m  

and hence we found 

2 ( 4  ) 2 )  - - - 0 . 4 4 2 4 8 - 1 - . . . ,  ~ , = - - ~  1 -  ( 1 - s i n  4-. . .  , (7.17) 

2 ( 0 . 5 3 4 9 )  
~, = V~ 1 ys~/-------- ~ + . . . .  (7.18) 

According to (7.18), ~, ---* 2/x/-g as ys ~ oo. 
The limit expression of the velocity of the wetting line 

V~v, = ~/2ze/(eh,) (7.19) 

corresponds to the universal relation [3]. Formula (7.19) is true for a significantly large radius of the meniscus 
R, which is related to hs by (2.7). 

Solution of the Problem of Spreading of a Semi-Infinite Film. From (7.13) and (7.14), under condition 
(7.3), we obtain 

s} ds sf ds (7.20) 
lny0 = 0 ~/1 --(S/Sm)exp(s ,n--s)  +_ ~/1 - - ( s / sm)exp(sm--  s) 

where s, s,,, are defined in (7.15). Formulas (7.15) and (7.20) relate the coefficient ~, of the wetting line 
velocity to the film thickness y0 at infinity. For small thicknesses (y0 "~ 1), the coefficient ~, depends on y0 
similarly to (7.16): 

y0 - 1 = ~ , ~ [ 2 +  . . .  (7.21) 

Large thickness values (y0 >> 1) correspond to the limit sm --* 1, where the integrals grow indefinitely. 
Formulas (7.17) and the following limit expression are valid: 

0 
f = 1.06616 + . . . ,  sm --+ 1. (7.22) 

ds 

- ~  1 - - -  exp(sm - s) 
Sm 

From (7.17), (7.20), and (7.22), we find 

2(1.1367)u 
~ ,  = 1 y ~ / 2  + . . . .  (7.23) 

Thus, as Y0 ~ cx), the coordinate ~, approaches the limiting value ~, = 2/x/~ in the problem of a 
stationary piston [3]. This proves that spreading of a film of large thickness obeys the universal relation (7.19) 
[3]. 

The solution of the problem of a stationary meniscus (7.15) is a part of the solution of the problem of 
spreading of a semi-infinite film. 

The relationship between ~, and y0 is given in Fig. 3 (curve 1). For comparison, graphs of asymptotes 
(7.21) and (7.23) are shown by curves 2 and 3. One can see that asymptotes (7.23) agree well with the exact 
solution and the velocity parameter ~, approximates (7.23) sufficiently rapidly with increasing film thickness 
Y0- 

Fluid Spreading Over a Surface Covered by a Film. The solutions of the problems of wetting of a dry 
surface can be extended beyond the wetting line if we admit formally values h < h,. For y < 1, we find a 
solution from formulas (7.12). If r ~ 0, then ~ ~ or and y --* y+. The limiting thickness is given by the 
formula 
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In I = / dz (7.24) 
Y+ ~ ~/1 + 4~72 ze z" 

Integral (7.24) equals the difference of the integrals in (7.20) for ~, < 2 /V~ and coincides with integral (7.22) 
for ~, = 2/V~. 

In the piston problem, the limiting thickness y+ --* 0 as G0 ~ co. The reason for this is that ~, --* co 
and integral (7.24) grows indefinitely. But small values ~0 -* 0 when ~, ~ 2/v/-~ are of the greatest interest. 
In this case the above-mentioned integral is close to 1. 

Thus, self-similar piston problems in the case where the surface is covered by a thin film with ~ ---* co 
or problems of thickness discontinuity decay are similar to problems of film spreading over a dry surface. 

Another solution that corresponds to conditions y --* y0 for ~ ~ - c o  and y ---* 0 for ~ ---* co is 
interesting. 

In this case, y --* ~-2 as ~ ---* co and C = 21n2 - 1 in (7.8)-(7.10). The parameter r = 4 for ~ = co. 
The solution is given by (7.9) and by the formula 

r 
In yo = [ de  

y 0J ~/r _ 4r162 - C)" 

The resulting solution describes the dynamics of a semi-infinite film in the range of rather large thicknesses, 
when the limiting thickness is large (y0 ---* co). 

8. R a n g e  of  Va l id i t y  of  t h e  I n t e r m e d i a t e  A s y m p t o t e s  for t ~ co.  Ignoring gravity in the 
dynamics of a wetting film is justified if the contribution of gravity to Eq. (2.1) is relatively small: 

z0 l A I 0g << ~ E l  ~> ~ ~ ( x 0 ) .  (8.1) 

The last relation is fulfilled for all exact solutions under consideration. This means that the contribution of 
the van der Wa~ls forces to the dynamics of the film grows with a decrease in the film thickness. Among the 
self-similar solutions, the case of a stationary meniscus where the p-film length is maximal at any moment t 
is the most interesting. For this case, from formulas (7.1) and (7.5), we find 

~ I ,=o=-VGi~ :oV2~ t  - ~ * T \ ~ )  " 
It is taken into account here that r = r  = ~,~ by virtue of the second formula from (7.14). Considering 
large values of thickness (hs ~> h,) when ~, = 2 / v ~  , we obtain from (8.1), by means of (2.7) and (8.2), the 
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equivalent limitation of the p-film length: 

1<<2 ~-, H, H = p g R .  (8.3) 

Hence an important  conclusion follows: the intermediate asymptotes for t ~ ~ (g = 0) are valid for wetting 
film lengths of the same order as the maximum height of meniscus rise (l ,-~ H). According to (8.3), a 
significant wetting effect due to van der Waals forces is achieved without a disturbing effect of g on film flow. 
The condition hs >> h,  is fulfilled for not too small radii R of the meniscus. For example, for h, = 10 -7 cm, 
a = 0.05 N/m,  and 'A t = 10 -2~ J, it is necessary that R >> 10 -5 cm. This is not a rigorous restriction, since 
R = 10 -5 cm corresponds to an enormous height of meniscus rise (H = 100 m) and a large right side of 
inequality (8.3). 

The effect of the ratio hs/h,  on the wetting rate for relatively large values of g can be studied using 
(2.1), (2.8), and (2.9). The lengths of p-films whose spreading is influenced by gravity are very large. Their 
propagation can be hindered, since the t ime of observation is limited. 
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